If it's not what You are looking for type in the equation solver your own equation and let us solve it.
51=2x^2
We move all terms to the left:
51-(2x^2)=0
a = -2; b = 0; c = +51;
Δ = b2-4ac
Δ = 02-4·(-2)·51
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{102}}{2*-2}=\frac{0-2\sqrt{102}}{-4} =-\frac{2\sqrt{102}}{-4} =-\frac{\sqrt{102}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{102}}{2*-2}=\frac{0+2\sqrt{102}}{-4} =\frac{2\sqrt{102}}{-4} =\frac{\sqrt{102}}{-2} $
| d/5=21 | | 4x-19+3x+25+90=180 | | 40=-9t-5 | | 31=x-0.05*x | | 192+17x+3+12x-9=360 | | -3(x-14)=-78 | | 31=x-0.5*x | | -3(n+12=12 | | 31=x-0.2*x | | 5(c-13)=10 | | 218+5x+14+3x+8=360 | | 5(c−13)=10 | | 46x=2806 | | 2(-3)-y=6 | | 7y–9–3y=3y–17 | | 218+5x+14+3x+8=300 | | -3(n+12)=12 | | x-194=713 | | 14=5v-6 | | 3+4=3x+4x | | r-63=124 | | 1z/5=2 | | -7-2x=7x+56 | | -3x/7=-2 | | 4312+y=5296 | | 2/(3x)+1/(3x)=357 | | 5x=x+7+29 | | (-7)-2x=7(x+8) | | x+13=87 | | (3x+5)+(9x–2)= | | -5x+3(2x+13)=34 | | 4=61-7y |